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1. Part 1. Experimental study of wake-boundary layer

interaction for different leading edge shapes

Introduction

Recent progress in both the linear and nonlinear aspects of stability theory has

highlighted the importance of receptivity problem [1]. One of the most unclear

part of receptivity studies is the receptivity of boundary-layer flow to vortical

disturbances. Some experimental [2] and theoretical [3] results permits to propose

that quasi-steady outer-flow vortical disturbances may trigger by-pass transition.

For this reason the experimental and theoretical study of vortex-boundary layer

interaction is an actual task. In present work such interaction is investigated for

the vorticity normal to the leading edge. The interest to this type of vortical

disturbances arises from the theoretical works of M.E. Goldstein et. al. [4-6],

where it was shown that the flow around the leading edge amplifies them through

vortex lines stretching. Far downstream, the amplification leads to significant

distortion of the boundary layer and, finally, to localized flow separation.

The purpose of experimental part of this work is study of the role of vortex

lines stretching mechanism in non-uniform flow interaction with boundary la.yer.

Such non-uniformity was produced by the wake behind a wire or a set of wires and

its interaction with boundary layer at the plates of different leading edge shal_es

was investigated. Laminar-turbulent transition caused by wake/boundary layer

interaction is a topic of investigation too.

1.1. Experimental setup and equipment

The experiment was performed in a low-turbulence direct-flow wind tunnel T-36 I

of Central Aerohydrodynamics institute (TsAGI). The test section is 2.6 m long,

0.5 m wide and 0.35 rn high, and is preceded by 12:1 contraction. The free-stream

turbulence level in the test section is 0.06%, measured in the band 5-1500 Hz at

velocities greater then 5m/s..

The general outline of experimental setup is shown in Figure 1 a. Interaction

of wake from vertically stretched wire or a set of wires with the boundary layer

over the horizontally mounted plate was studied. Four plates with different shapes

of leading edge shown in Figure 2 were used. These plates of 1810 mrn long,

500 turn wide and 20 mm thick were made from Plexiglas and had drains for

static pressure distribution measurements. Plates # 1,2 and 4 had senti-elliptical

leading edges of aspect ratios 8:1, 4:1, and 1:1. The last semicircular leading

edge is too blunt, so local separated bubble occurred when the flow around it is

symmetrk. In order to achieve the non-separated symmetric llow over possibly

blunt nose, the leading edge of plate #3 was designed. The contour of this leading



edgeis describedbyexpression

la 2ay la a x 2y__= _ 2 _ _2 + tan(2_arctan a) + 2 + arctan a _ = 2_- Y = 11

where x,y are longitudinal and vertical coordinates of nose contour, H =

20ram - thickness of the plate, a = 4.65. The radii of noses of plates #1,2,3,4 are

1.25mm, 2.Smm, 5.31ram, lOmm respectively, so the plate #1 had the most

sharp nose and nose radius grows monotonically with number of plate increase.

To control the stagnation point position over nose two flaps mounted above

the plate near its trailing edge were used. The wires were stretched at the holdc,r

moving horizontally with steps 0.i ram. All three components of velocity were

measured with a DISA 55M01 anemometer. A single hot wire probe with hori-

zontal wire of diameter 5#m and a sensitive length 0.5 mm was used for stream-

wise velocity measurements. Spanwise and vertical components of velocity were

measured by X-wire probe of similar dimensions. The probe was mounted on a

carriage and was transversed in streamwise and vertical directions. The accuracy.
of probe movement in vertical direction was 0.1 ram. Instead of probe move-

ment in spanwise direction the horizontal transmission of the wires was used.

Coordinate system and general designations used are shown in Figure 1 b, c.

1.2. Undisturbed flow around plates

The interaction of non-uniform flow with boundary layer over the plates of dif-

ferent leading edge shape was studied for free-stream velocities u_ = 5m/s alld

17m/s. the most of results were obtained for u_ = 17m/s, so the undisturbed

flow around the plates for this velocity only will be described in details. Brief

information concerning flow with uoo = 5m/s is presented in the end of this

subsection, for more fully it is described in previous report.

For plates #1-3 the flow around the leading edge was adjusted to be symmet-

ric. Symmetric flow over blunt semicircular nose of plate #4 WaS separated, with

the local separated bubble located near nose-plate mating appears. To eliminate

separation the attachment line was moved to upper part of nose and flow a.rouiid

plate #4 becomes substantially asymmetric.

Velocity distributions along the upper and lower sides of nose for all plates

computed from static pressure measured are shown in Figure 3. For plates #1-3

the velocity at lower and upper sides coincides within 2% of outer flow velocity, so

the fl0W around leading edge was almost perfectly symmetric. Velocity distribu-

tion over the plate #4 is substantially asymmetric, with velocity at upper side ol'

it is smaller then this at the lower side. Moreover, velocities in first two points at

upper side are approximately the same. So, stagnation point was located between

two first drains i.e. at y between 2 and 4turn.

At all plates the flow accelerates initially and then retreads to u_, near the

beginning of the plane part of the surface. In accordance with theory, the largest



accelerationshouldoccur at the most blunt noseand the velocity maximum
shoulddecreaseasthe leadingedgebecomessharper.This rule really fulfilled for
velocitydistributionsat plates#1-3. The most blunt noseplate #4 standsout
of this rule, with the velocity maximumat the uppersideof it is the smallest.
The reasonof this is the asymmetricflow about leadingedgeof plate #4.

Velocitydistributionsalongtheplanepartsof all platesmeasuredby hot wire

probe outside the boundary layer (at y = 40mm) are plotted in Figure 4. For

plates #1-3 there exist a slight negative pressure gradient along x and pressure

gradient is slightly positive for plate #4. All these gradients are very small, with

velocity varies by 1% over the length of lm.

Velocity profiles in the boundary layer at different distances x from thc leading

edge for plates #1-4 are shown in Figures 5-8. Near the leading edge (x = 20

and 40 ram) tile profiles have maxima at the joint of boundary layer and inviscid

flow. The velocity at these maxima (shown by open symbols in figure 3) closely
coincides with velocity obtained from static pressure n_easmements. Far from

leading edge velocity profiles tends to Blasius profile for flat-plate boundary layer.

At plates #1-3 the flow in boundary layer was laminar with r.ln.S, velocity

pulsations in it was less then 0.3% of u_ over all plates length. Laminar- turbulent

transition was observed in a boundary layer of plate #4 at x ,-_ 500ram. Two

factors may cause the transition: positive pressure gradient and amplification of
outer flow pulsations at the blunt nose.

Only plates #2 and 4 were tested for outer flow velocity 5m/s. Velocity

distributions over noses for this speed were the same as these for uoo = 17m/.__

with accuracy --_4/%. The distributions of velocity over plane parts of the plates

for u_ = 17m/s and 5m/s coincides within accuracy of measurements (,-_ 0.3%).

The boundary layer at both plates in flow with uoo = 5rn/s was laminar, with

r.m.s, velocity pulsations in it were less then 0.2% from u_.

1.3. Flow in wakes

In the reported work four wakes were used as a source of upstream inhomogelaeity.
One of them is steady laminar wake behind a wire of d = 0.09ram in a flow with

uoo = 5m/s. The Reynolds number of this wake based on diameter of the wire

was Rd = u_d/v = 31 and velocity pulsations within it are the same as in the

free stream. Two next wakes: the wake behind the wire of d = 0.09ram in flow

with u_ = 17m/s and the wake from wire of d = 0.3ram in flow with u_ = 5m/._

were not entirely laminar. Both of them had Reynolds number Re _ 105, which

exceeds the critical Reynolds number R. ,-_ 40-50 for steady laminar flow around

the cylinder [8]. So, the Karman vortex street occurs in the flow behind wire.

This street decays gradually downstream and for distance greater then 100 d, the

peak in velocity pulsation spectrum associated with it disappears [sJ. Pulsations

in such decayed Karman vortex streets were about 0.2% of the outer flow velocity.

It is more then in laminar wake, but it is sufficiently less then in turbulent one.



The fourth wakewasa wakebehind a set of wiresof d = 0.09ram placed in

distance D = 6ram from each other along the span in flow with u_ = 17m/s.

Profiles of mean velocity in all wakes behind single wire were found well
correlate with formula

-- = -- Uo = - = B - lo
X/_ -/o

(1.1)
where uo is velocity deficit, b - half-width of the wake, L - distance flom the

wire, A, B, Io -constants. For laminar wake it is an exact solution of Prandtl

equations with A = 4 V-7-' B = 2 , l0 = 0. From experimental data for

wake behind wire of d = 0.09ram in flow with u_ = 5m/s it was found that
A = 1.35.

For wakes of wire of d = 0.3ram in flow with uoo = 5m/s and of wire of

d = 0.09rnm in flow with uoo = 17rn/s, which are decayed Karman vortex streets

(1.1) is only a fit of experimental data. Velocity deficits uo,and hall-widths b o1

these wakes as functions of distance from wire L are plotted in Figures 9 and

10 respectively. Lines in this figures shows fits (1.1) with constants A, B and 10

found fl'om experimental data.

The flow in the wake from a set of wires is more complicated. Mean velocity

profiles measured in these wakes for distances fl'om wires L = 60, 170, 270, 370,

550,800ram are shown in Figure 11. Not far fl'om wires (L = 60ram) the wakes of

the individual wires developed independently one from another. As L increases

(L = 170, 270 and 370ram) the wakes becomes wider and the interaction of

neighboring wakes began. Finally, for L = 550 and 800ram the velocity profile

becomes near-sinusoidal and it remains qualitatively the same for larger distance

from wires. The flow distortion Au, i.e. the difference between maximal and

minimal velocities in profiles as function of L is shown in Figure 10 together with

velocity deficit in the wake from one wire. There were observed no distinctive

difference between the L- dependencies of flow distortion in wakes from the single

wire and from the set of wires. Theoretically, this difference should exist, but the

accuracy of the measurements is not enough to observe it. The maximal velocity

pulsations in the wake fl'om set of wires were about 0.2 - 0.3%, and slightly

exceeds the pulsations in a single wire wake.

1.4. Wake-boundary layer interaction

Interaction of the boundary layer at the plates of different leading edge shapes

with wakes described in previous section was studied for various distances fl'om

wire to leading edge. Geometry and flow parameters of all configurations tested,

that is diameter and amount of wires, velocity, number of plate used, distance



fl'omwire to leadingedgearelisted in the Table. TheTable alsoincludeschar-
acteristicsof wakesat the leadingedgepositionandother important parameters
describingtheseconfigurations.

Interaction of wakebehindsinglewire with boundary layerwasstudiedin
details,somostof this sectionis devotedto this topic. Only preliminaryresults
concerninga wakefrom asetof wireactionon boundarylayeraredescribedhere.

1.4.1. Steady boundary layer distortion

For small outer flow velocity of 5 m/s (configurations 15-19 in Table) the wake

slightly distorted boundary layer. The maximum velocity deviation fl'om undis-

turbed flow was only 3 times grater then velocity deficit in oncoming wake. The

slight effect of vortical disturbances on boundary layer in this regime is caused

by low unit Reynolds number R1 = u_l/v = 3.45 * l0 s and large boundary

layer thickness comparable with the radius of the plate nose. Main results were

obtained for outer flow velocity 17 m/s corresponding to higher unit Reynolds
number R1 = 1.17 • 106. For this value of R1 the maximal flow distortion was

about 10 times grater, then oncoming flow inhomogeneity.

There were observed three qualitatively different regimes of single wire wake

/boundary layer interaction: linear regime, symmetric nonlinear regime and anti-

symmetric nonlinear regime. General features of these regimes will be illustrated

for interaction of wake behind the wire of d = 0.09ram in flow with u_ = 17m/s

with plate #2. For this wake and plate combination linear regime was observed

ill configuration 8, when L = 725mm; symmetric nonlinear regime occurred ill

configuration 6 when L = 250turn and antisymmetric nonlinear regime occurred

for L = 40ram in configuration 4 (see Table). Evolution in x of spanwise distri-

butions of streamwise velocity in boundary layer observed in thesc three regimes

are shown in Figures 12, 13, and 14 respectively. The boundary layer flow dis-

tortions Aub as functions of distance from leading edge x for the same regimes
are plotted in Figure 15. This distortion Aub is determined as a difference be-

tween the maximal and minimal velocities in the spanwise profile measured for y
corresponding to u = 0.5uoo.

Linear regime occurs when the distance from wire to leading edge is large

enough and velocity deficit of oncoming wake is small. In this case the shape

of spanwise distribution of velocity in boundary layer approximately repeats the

velocity profile in the wake. The amplitude of boundary layer distortion grows

almost .linearly with distance from leading edge.

When the wire was placed closer to leading edge, the boundary layer re-

sponse to the wake becomes noticeable nonlinear. Nonlinearity manifests itsel[

in deformation of spanwise profile of velocity in boundary layer (see Figures t3

and 14). For moderate distance from leading edge L = 250ram, the profile re-

mains symmetric with respect to the wake centre, so this regime of interaction is

called as nonlinear symmetric one. If the wire was placed nearby to leading edge



(L = 40ram),the boundarylayerresponseto the symmetric wake becomes anti-

symmetric as shown in Figure 14). This type of wake/boundary layer interaction

will be called as nonlinear antisymmetric regime. There are two possible anti-

symmetric regimes: the "right" regime (shown in Figure 14) with maximum of

velocity at the right side and the "left" one with maximum at the left side. Both

of these regimes were observed and they change each other randomly when the

wind tunnel was stopped and started again. For definiteness, in all next figures

dealing with antisymmetric flow distortion the right regime is shown. Unlike the

linear regime, the flow distortion in both nonlinear regimes reaches maximum at

about 100rnm fi'om leading edge and then decay downstream (see Figure 15). At

large distance from leading edge (600mm for example), the distortion fiom weak

wake initiating linear regime becomes greater than distortion from high-deficit

wake initiating non-linear regime.

Streamwise velocity distributions in plane normal to flow direction (y,z-

plane) for nonlinear antisymmetric, nonlinear symmetric and linear regimes are

shown in Figures 16a), 17a) and 18. In addition to these data, distributions of

spanwise and vertical components of velocity in this plane for nonlinear anti-

symmetric and nonlinear symmetric regimes are shown in Figures 16 b) and 17

b). Vectors plotted in these Figures are proportional to projection of velocity

onto (y,z) plane. Dashed lines y = 2mm shows the outer edge of boundary

layer where u = 0.99uoo. For distances from the plate y < lmru the measure-

ments of vertical and spanwise velocity components becomes impossible because

of probe size, so the reconstruction of the flow based on subsequent speculations

is drawn here. Figure 17 b) shows that nonlinear symmetric regime of boundary

layer distortion is associated with two counter-rotational vortices located above

the boundary layer at z _ 4ram. In nonlinear antisymmetric regime only one

streamwise vortex at z _- 4rnm was observed as shown in Figure 16 b).

To explain the formation of three different types of boundary layer distortion,

let's consider the conceptual scherne of wake/leading edge interaction, showll in

Figure 19. The wake may be considered as a pair of counter-rotational vortex

sheets. Stretching of these sheets vortex lines around the nose produce a pair of

counter-rotational streamwise vortices at the plate surface. The lifting of fluid

between the vortices causes the diminishing of the streamwise velocity, whereas at

the periphery of them the downwards outer flow leads to growth in the boundary

layer velocity. This explains the boundary layer distortion in linear regime.

In nonlinear symmetric regime the local maximum of velocity ir_ the middle

of the .wake appears (see Figure 13). Figure 17 a) shows, that this maximum

becomes more pronounced in the vicinity of the wall. Formation of this maximum

may be explained if we suppose that when streamwise vortices become strong

enough two small-size secondary vortices originate within the boundary layer as

drawn in Figure 17 b). Contrary to main vortices, the secondary vortices drops

fluid in the middle and produce local velocity maximum.

The loss of symmetry and antisymmetric regime production may be explained



bythe instabilityof streamwisevortexsystemassociatedwith nonlinearsymmet-
ric regime. This phenomenonis similar to the well-knownCrow instability [7]
of a pair of streamwisecounter-rotationalvorticeswhichmanifestsin twisting of
vorticesin a spiral manner. The result ol' it shouldbe tile lifting o1'one vortex
and the remainedvortex will producean antisymmetricflow distortion. Such
vortex is really seenin Figure 16b), whereflow in (y, z)- plane lot- antisyan-

metric regime is shown. Another point in support of the instability mechanism

of antisymmetric regime formation provides the flow distortion development in

configuration 10 shown in Figure 20 a). In this configuration initially symmet-

ric boundary layer distortion gradually becomes asymmetric with x growth and
finally reaches completely antisymmetric state at x = 200ram.

Contrary to unbounded stream where the Crow instability occurs for all vortex

strengths, the wall and viscosity should stabilize the vortex pair. The instability

should occur only if the vortices are strong enough to lift one of them. In accor-

dance with rapid distortion theory [4], the streamwise vorticity is proportional

to initial vertical vorticity in the wake which may be estimated as uo/b. The in-

stability should exist if this vorticity is large with respect to some characteristic

velocity gradient in a flow around the nose. If we suppose the inviscid nature of

instability, this gradient should be uoo/r where r is the radius of nose, and the

non-dimensional stability criterion K = _ can be constructed. If the insta-
b uc_

bility related with vortices/boundary layer interaction is expected, the vorticity

should be related to velocity gradient in boundary layer over nose. In this ca.sc,

the stability criterion becomes K, m_ where _ (._-_ / 1/'_= b ,,_0, = ,_, is the boundary
layer thickness in the stagnation point. Both criteria for all configurations tested

are given in Table. Comparison of two criteria shows that transition of a symmet-
ric flow into antisymmetric some better correlates with inviscid criterion h'. As

a rule, boundary layer flow is symmetric for K _< 0.1 and becomes antisymmetric

for K _> 0.2. The exceptions to this rule are configurations configurations 18 and

19 and 13,14, where the symmetric distortion occurs for K ___0.2. In two first

configurations (18,19) the unit Reynolds number is too small, so the wake width

is approximately equal to boundary layer thickness and wake-boundary layer in-

teraction is fully viscous. In two other configurations 13 and 14 the [low around

the nose of plate #4 was not symmetric, so the comparison of the results with

these for symmetric flow around plates #1-3 is not correct. In any case this corre-

lation shows the significant role of inviscid processes in symmetry/antisymmetry
transformation.

Integral characteristics of boundary layer distorted by wake in all three regilnes

of interaction (displacement thickness $*, momentum-loss thickness _**, and form-

parameter H = $'/_**) as functions of Z are shown in Figure 20 b). This Figure

shows, that wake strongly deforms the boundary layer and it's parameters vary by

a.n order of unity. In accordance with the previous speculations, in linear regime

the boundary layer becomes thicker in the wake centre. In nonlinear symmetric



regimethe displacementthicknessgrowsat sidesof the wake and remains almost

unchanged in it's centre. The minimum of 6" in the wake's centre is probably

caused by downward flow produced by secondary vortices. The form of (5"(z) de-

pendance in antisymmetric regime is antisymmetric too, with (5" increases at the

left side where fluid moves upward and decrease at the right side where downward

flow (Y, z) plane was observed (see figure 16 b).

Vertical distributions of boundary layer distortion Aub measured in different

configurations and different distances from leading edge z are shown in Figure

21. For convenience, these distortions are normalized by their maximums and

Y is referred to boundary layer displacement thickness 6" in the places, where

the distortions were measured. In. these variables all data are grouped near two

curves, shown by thick solid and dashed lines, with data for nonlinear symmetric

and antisymmetric regimes lie near one curve and data for linear regime form

the second curve. Curve for nonlinear regimes well coincides with profile of low-

frequency pulsations in boundary layer under enhanced outer flow turbulence level

measured by Kendall [9]. Maximum of distortion in linear regimes of interaction

is shifted from the wall to y __ 1.76".

To study the role of leading edge in wake/boundary layer interaction the plates

# t-3 were tested for the same outer flow conditions. Three tests of this type were

made for u_ = 17rn/s, d = 0.09turn and distances fi'om wire to leading edge

L = 40, 250 and 725mm. Results of them in form of x-dependencies of boundary

layer distortions Aub and pulsations u' at all three plates for L = 40, 250 and

725rnm are shown in Figures 22, 23 and 24 respectively. Distortions Auv plotted

in parts a) of the Figures were determined as a differences between the maximal

and minimal velocities in the spanwise profiles measured for y corresponding to

u = 0.5u_. Pulsations u' shown in parts b) of these Figures are the maximal

over span values of r.m.s, streamwise velocity pulsations in frequency range

5 - 1500Hz measured for the same y. Distortion and pulsations measured in this

way are close to their maximum values in the section x = const. The data about

pulsations permits to estimate the influence of pulsations on steady boundary

layer distortion development.

For small (L = 40rnrn) and large (L = 725rnrn) distances from wire to leading

edge the influence of nose shape on boundary layer distortion is clearly defined.

In these cases the distortion grows as radius of leading edge increase, with distri-

butions of distortion over x are qualitatively similar for all shapes o[" leading edge.

For L = 725rnrn (see Figure 24 a)) the linear regime of distortion occurred at all

plates..As was mentioned above, the distortion for this regime grows with .z' over

the entire length of plate. At first glance, it would seem that the distributions of

distortion over blunt nos e plate #3 stands out of this rule, for distortion reaches
maximum at x = 300rnrn and then decreases. However, this is not the case tor

the decrease of distortion is caused by laminar-turbulent transition occurred at

.r ,-_ 300 - 400ram (see Figure 24 b)). Laminar-turbulent transition in this con-

figuration is considered in subsection 2.4.2 in more detailes (see also Figure 29).



At plate#2 the pulsationsaresufficientlylargeto effectOil thesteadyboundary
layerdistortiontoo. Only at plate #1 the puresteadyflow iilhomogeneityinter-
action with boundarylayerwasobserved.For this reason,the dataobtainedare
insufficientfor finding the quantitative relationshipbetweenthe radiusof nose
andboundarylayerdistortion in linearregime.Whetherthegrowthof distortion
is linear in x or it saturates at some distance from leading edge is unclear yet.

For all other distances from wire to leading edge (L = 40 and 250ram) the

boundary layer remained laminar and effect of pulsations on steady distortion

development was negligible. For L = 40turn nonlinear antisymmetric regime

occurred at all plates. The distributions of boundary layer distortion in this case

shown in Figure 22 a) have maxima at moderate distance from leading edge and

decayed for large x. The maximal over x distortion is approximately proportional

to radius of leading edge, and distances from leading edge to maximum varies

in inverse proportion to this radius. It should be remarked that in Goldsteins

theory [4] the distance from leading edge to singularity is inversely proportional

to radius of leading edge also.
Distributions of distortion over x measured for L = 250'ram a.nd different

plates were quite different, because they correspond to different regimes of wake

/boundary layer interaction. At plate #3 the nonlinear antisymmetric regime

occurred and distribution of Aub is similar to that for antisymmetric regime

shown in Figure 22 a). Pure nonlinear symmetric regime occurred at plate #2

and distribution of distortion exhibited maximum and then decayed. At the most

sharp leading edge plate #1 the z- profiles of distortion for small z had features

of nonlinear symmetric regime, but for x > 300ram they becomes quite similar

to profiles observed in linear regime. So, the distortion initially decays and then

begins to grow ill a manner familiar for linear regime. For small x, as usual,

the maximal distortion occurred at blunt nose plate #3. But for large 3: the

distortion at the most sharp nose plate #1 unexpectedly becomes grater, then

those at more blunt nose plates #2 and #3.

Boundary layer response on the wake behind a set of 5 wires was studied only

in four configurations: for L = 40turn at plates #1and #3 (configurations 20 and

23) and for L = 725mm at plates #1and #2 (configurations 21 and 22). Re-

sults in form of x-dependencies of boundary layer distortion Au_ and pulsations

u' are shown by dashed lines in Figure 22 (for L = 40ram) and Figure 24 (for

L = 725rnra) together with similar data for wake from single wire. Except config-

uration 22 with L = 725rnm and plate #2, the boundary layer distortion from a

set of wires differs from those from a single wire less then 15%. In configuration 22

the distortion from the set of wires is two times greater then this from single wire.

Consequently, tile flow inhomogeneity amplification in this configuration depends

crucially upon the shape of oncoming velocity profile. Hence, the wake/ bound-

ary layer interaction in this regime is nonlinear. Figure 25 shows the evolution of

spanwise profiles of mean velocity and its pulsations measured in configuration

22. Unexpectedly, no deformation of almost sinusoidal profile of oncoming flow



in boundarylayer is seenin this Figure.Similar profilescorrespondingto inl.et'-
action of wakefrom a set of wireswith plate #3 for L = 40ram (configuration

23) are shown in Figure 26. For such small distance from wires to leading edge

the oncoming flow is a superposition of five wakes from individual wires. These

wakes initially interact with leading edge independently, so the velocity profile

for x = 25rnm is a superposition of 5 profiles familiar for single wake/boundary

layer interaction in nonlinear antisymmetric regime. The orientation of flow dis-

tortion h'om these wires is not the same, with three middle wires produced "left"

regime and two side wires excited "right" one. The flow distortions in all but one

wakes are identical and equal to flow distortion from single wire. This explains

the coincidence of flow distortions.from a single wire and a set of wires for small

and moderate x. Sufficient interaction between neighboring wakes begins only

for x > 100ram where laminar-turbulent transition occurred and comparison of

distortions becomes meaningful.

Response of boundary layer at sharp nose plate #1 to both near (L = 40re,n)

and far (L = 725mm) wakes seems to be lineal', so the distortions from one wire

and a set of wires were approximately the same (see Figures 22 a.nd 24). Linear

behavior of distortion is probably caused by weak vortex lines stretching by Itow

around sharp nose. However, all conclusions concerning boundary layer respons(:

on wakes linearity drawn here are quite preliminary and should be proved during

the future work.

1.4.2. Laminar-turbulent transition caused by wake/boundary layer in-

teraction

Laminar-turbulent transition excited by wake/boundary layer interaction was

studied also. Boundary layer distortions Aub and pulsations u' as function of x

measured in configurations where transition takes place are plotted in Figure 27.

Two different types of transition may be distinguished. The first one is associated

with origination of high pulsations (--, 6 - 8%) immediately in the first near-nose

section, where the measurements were made. This type of transition occurred

in configurations 12, 13, 23 when near wake interacted with blunt nose plates

#3 and #4. Example of mean velocity and pulsations profiles development l'or

this type transition excited by wake from single wire in configuration 12 is shown

in Figure 28. Similar results for transition from a set of wires in configuration

23 may be seen in Figure 26. Possible reason of pulsations origination near the

leading edge may be local flow separation provoked by wake. Really, the boundary

layer distortion in the near nose section x = 20 or 25ram in configurations 12,

23 are very strong (see Figures 28, 26) and the velocity profiles near nose may

correspond to separated flow in boundary layer. It's interesting, that in flow

distorted by a set of wires (configuration 23) the pulsations originated in wake

behind one of wires (fourth from left side) only. It may be caused by interaction

of distortions of different orientations ("left" and "right") near the nose. Behind

10



the second wire where the same interaction takes place the growth of pulsations

occurs too, but it begins later at z = 100turn. For regimes of interactiou shown in

Figures 26 and 28 the effect of pulsations on mean flow development is significant
over whole plate surface. The flow in the centre of wake becomes turbnlent at

small distance --, 100 - 200rnm fi'om leading edge. Further, the turbulent flow

spreads on the region much wider then the part of boundary layer distorted by
the wake.

The second type of transition is characterized by gradual growth of initially

small pulsations. Complete transition of this type was observed in configura-
tions 11 and 22 tor boundary layer distorted by single wire and a set of wires

respectively. Development of mean velocity and pulsations profiles in course of

transitions in these configurations are shown in Figures 29 and 25. For the wake

from single wire/boundary layer interaction (Figure 29) the maximal pulsations

initially (at z = 150ram) were observed at the sides of the wake where spanwise

gradient of velocity is maximal. In this stage of transition pulsations still have no

effect on mean velocity profile. Further at x = 350ram the additional maximum

of pulsations appears in the middle of the wake and distribution of pulsations

becomes wider. Reaching high level of ,-- 10% of u_ pulsations begin to delbrm

mean velocity profile with velocity increases at the sides of the wake. Finally,

at z = 400ram several maximums of pulsations forming peak-valley structure

appears and turbulence begins to spread in spanwise direction. In final section

z = 500ram the turbulent part of boundary layer is about 5 tinies wider then

oncoming wake.

Transition excited by a set of five wires shown in Figure 25 exhibits the same

features. Initially at z = 300ram maximums of pulsations are located between

maximums and minimums of mean flow velocity and coincides with maximal

gradients of velocity in spanwise direction. Further (z = 350turn) maxinmms of

pulsations move to the minimums of mean velocity and finally at x = 500ram

turbulence spreads to width region. It's interesting, that pulsations at sides of

disturbed domain are grater then those in it's central part during entire transition
process.

To reveal the type of disturbances responsible for transition, the power spectra

of streamwise velocity pulsations were measured. These spectra in configuration

11 in section x = 150ram, where pulsations began to grow are shown in Figure

:30. From this Figure it is seen that the spectra measured in the centre of wake,

at side of it, and far from the wake are quite different. A broad wave packet

with frequencies around 720Hz can be seen in the spectrum at side of the wake.

Spectrum in the centre of it contains this packet too, but the major part of its

energy is confined in low frequency band. The reduced frequency of this wave

packet F = 106.2rruf/u_ = 227 is approximately equals to the frequency of high-

frequency pulsations observed in flow with embedded streamwise vortices in [10].

The spectrum measured far enough from wake contains packet with f -_ 500Hz

or F _-, 150. This packet, in principle, may be formed by Tollmien-Schlichting
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waves generated in boundary layer by the disturbances within the wake.

Spectra measured in configuration 22 where transition excited by a set of

wires was observed are shown in Figures 31 and 32. Figure 31 shows spectra

measured at the side of wake for z = -17ram, whereas spectra measured at the

nearest to centre maximum of mean velocity (z = -3ram) are plotted in Figure

32. Three spectra measured at beginning (x = 150mm), middle (x = 200ram)

and end (x = 350ram) of transition are presented in both Figures. A packet

with frequency,-, 720Hz the same as for single wire is seen only in spectrum at

side of wake in the beginning of transition. Other spectra measured at side of

wake are broadband, with low frequency pulsations grow predominantly over the

middle and end of transition. In .the centre of wake all spectra are broadband

and transition here is associated with growth of low-frequency pulsations.

1.4.3. Discussion

In this section the data obtained will be compared with recent experimental and

theoretical results dealing with boundary layer receptivity to quasi-steady outer

flow vortical disturbances and subsequent amplification of these disturbances in

a boundary layer. For convenience of such comparison, let's introduce the am-

plification coefficient k defined as k = Aub/uo. This coefficient as function of

Reynolds number R = u_x/v computed for different regimes of single wire wake

interaction with plates #1 and 3 are plotted in Figure 33 a) and b) respectively.

For the influence of flow inhomogeneity amplitude u0 is excluded by means of am-

plification coefficient introduction, the spanwise scale of flow inhomogeneity (b)

remains as a single parameter describing oncoming flow. From Figure 33 one catJ

see that near the leading edge the boundary layer response to flow inhomogeneity

is almost independent from it's scale. At large distance from leading edge large

scale disturbances with b = 1.6ram (L = 720ram) amplify and small scale ones

with b = 0.88 and 0.46ram (L = 250 and 40ram) decay" or remain almost con-

stant. Similar conclusion may be drawn from Kendall's [9, 11] experimental data

on transition driven by fi'ee-stream turbulence if the correlation between the span-

wise A and time T ,,_ 1/f scales of free-stream turbulence A -,- const, r _,, coTzst/f

is assumed. Measured in [11] r.m.s, velocity pulsations in six frequency bands

shown as function of R in Figure 34 reveals the similar behavior as anaplifica-

tion coefficients in Figure 33. Really, near the nose the amplitudes in aU bands

are approximately the same, so disturbances of all scales amplify almost equally

here. For large Reynolds number (far from leading edge) the low frequency or

large scale pulsations grow but small size or high frequency ones remains almost

independent fiom R. Another proof of this trend may be seen in Figure 35 where

broadband r.m.s, pulsations in boundary layer as function of spanwise wavenum-

ber _ = _'_' are plotted. This curve is computed from the cross-correlation data
given in Figure 5 of [9]. Figure 35 directly shows, that large-size disturbances

are more amplified than the small-size ones. Nevertheless, there exist naaximum
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of amplitudeat _ ,-- 2.5 • 10-4 and very large-size pulsations grow more slowly.

Estimates of _ in our experiments obtained assuming _ ,-, 4b are _ ,-_ S - 10 -t

for large scale inhomogeneity corresponding to L = 720rnm and _ = 1.5. 10 -3

and 3.10 -a for near wakes with L = 250 and 40rnrn respectively. So, the largest

scale inhomogeneity used in our tests is too small with respect to optimal size of

disturbances exhibiting maximal amplification in [9]. This fact explains relatively

weak growth of disturbances observed here with respect to 30 - 60 times ampli-

fication of low fl'equency pulsations in boundary layer reported in [11]. Another

possible reason of weak growth of disturbances in our experiment is the influence

of non-linearity, for boundary layer distortion was very large --_ 0.3 - 0.5u.,,, with

respect to r.m.s, pulsation in [11] been 3 - 5%u_.

If we are of the opinion that all scales of flow inhomogeneity used in our

tests are small and correspond to middle or high frequency pulsations in [9,11],

the finding of two different vertical profiles of boundary layer distortion shown

in Figure 21 becomes consistent with data of [11]. It turns out that vertical

profiles of high frequency pulsations shown in Figure 36 are not self-similar and

changes with distance from leading edge. For small a: it is similar to well-known

distribution for low-frequency pulsations shown by (X) in Figure '2l al_d it's

maximum moves from wall as x increase. Similar correlation may be seen in

Figure 21 where dashed curve with near-wall maximum is composed from data

measured at a: = 150rnrn, and solid curve with maximum far from wall is tormed

by distortions measured at larger z. However, the shift of maximum in linear

regime may be caused by non-linearity i.e. large amplitude of distortion ,-_ 30%

in our experiment. Really, it is the linear regime produces the maximal deviations

of the boundary layer displacement thickness in the disturbed domain. In the

centre of it 5" exceeds the undisturbed value by factor of 1.4 (see Figure 20 b).

So, it is unclear, what value of displacement thickness should be used for scaling

of y in this regime. If some averaged 5" ,-_ 1.25_ (5_ is displacement thickness

of undisturbed boundary layer) was used, the curves for linear and nonlinear

regimes would coincide.

The amplification coefficients obtained here may be more directly compared

with theoretical results of [12], where the steady spanwise-periodic disturbances

experienced maximal spatial growth were found. The amplification coefficient

may be directly computed from the results of this work as k = v/G, where G is

the energy growth. If we assume that energy in initial section is proportional to

u02, the amplification coefficient computed in this manner will be proportional to

that measured here. Figure 37 shows amplification coefficient as function of 1_

for various _ computed from results of [12]. This Figure is quite simila.r to Figure

33 a) where our experimental results are plotted, with large scale disturbances

grows with R and small Size ones decay in both Figures. Theory [12] gives the

expression for wave number providing maximal growth as _ --, 0.45/v/R. For

R = 10_corresponding to z ,-, 800rnrn in our experiment it gives /3 = 4.5 • 10-4

which correspond to spatial period _ --- 13rnm o1" b _ 3.2ram and is two times
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grater than maximalspanwisescaleusedin our tests.
In general,results dealing with amplification of steady inhomogeneityin

boundarylayerat sharpnoseplate #1 obtainedherearein qualitativeagreement
withavailabledataaboutboundary layer response to free-stream turbulence. The

amplification coefficients at blunt nose plate #3 exhibit the similar properties,

but they arc two times greater then these for sharp nose plate #1. So, the respo,_se

of boundary layer at plate #3 to outer flow turbulence should be two times greater

then this at sharp nose models usually used in such experiments. Consequently,

one may suppose, that the similar development of transition at plate #3 will

take place for twice smaller outer flow turbulence level. Due to most of bodies

of practical use (wings, turbine blades and others) have blunt leading edges, this

conclusion may be important for transition prediction.

2. Part 2. Theoretical study of boundary layer receptiv-

ity to steady outer flow inhomogeneity and resulting

laminar-t urbulent transition.

Introduction

Response of steady boundary layer on the plate to the steady outer flow inho-

mogeneity (or vorticity normal to leading edge) was studied in works of Goldsteill

et al [7]. Here it was found that the flow around the leading edge amplify the vor-

tical disturbances throw the vortex stretching mechanism. Initially these vortices

excite distortion of boundary layer flow growing linearly in streamwise direction.

Far downstream the amplification result in appearance of flow inhomogeneity of

finite amplitude. In the experiments described in section 1. the finite amplitude

flow inhomogeneity in boundary layer was observed too.

Nevertheless, the laminar- turbulent transition is not caused directly by steady

flow inhomogeneity, but it is provides conditions for flow instability with respect

to unsteady pulsations. The stability of such boundary layer with steady spanwise

modulation of velocity profile is studied theoretically in section 2.1.

The action of vortex stretching mechanism introduced by Goldst¢,ith ct all

[6] for the swept wing flow is a topic of section 2.2. In this flow additional

mechanism of flow inhomogeneity amplification via generation of steady cross-

flow instability modes was found. Results obtained in this section explains some

data of experiment of section 1. and provides the new area for future experimental
work.

2.1. Stability of boundary layer with steady inhomogeneity of velocity

profile

In this section the stability of boundary layer flow with steady spanwise mod-

ulation of velocity profile is studied theoretically. Such modulation is a model
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of a streakystructureoriginatingin theboundarylayersubjectedto free-stream
turbulence.The non-uniformflowin boundarylayerproducedbywakeisanother
exampleof modulatedflow. It's well-knownthat transition is not causeddirectly
bysteadyflowdistortion,but it's initiatedby thegrowthofhigh-frequencytravel-
ling waves.For this reason,thestability studiesof modulatedflowsarenecessary
for understandingof transition causedby outer flow turbulence. In contrast to
generalizedRayleigh'sequation approachusedin [6], the stability analysisis
basedonmoregenerallinearizedNavier-Stokesequations.

2.1.1. Problem formulation

Considerthe stability of boundarylayerflow with steadyvariationsof velocity
profile in spanwisedirection.We'll usethe coordinatesystemintroducedin sec-
tion 2 with lengthsscaledwith averagedoverspanboundarylayerdisplacement
thickness6". BasicflowV0(y, z) is considered to be spanwise-periodic with pe-

riod Tz and homogeneous in streamwise direction. We present this flow in lorm
of Fourier series

Vo = {go(y),0,0} v, =

Vi = {ui,Vi,wi}

Vone in3"
_=-N (2.1)

where Uo(y) - Blasius flow profile, Vi - flow inhomogeneity, fl = 27r/T:.

There are two general types of unstable disturbances in periodic flows: the

disturbances of the same period as the basic flow (fundamental disturbances) and

subharmonic ones. Disturbances of both types will be sought in common form

v, = v, =
titan

We'll consider the temporal stability i.e. complex w corresponding to real a

will be sought.

Substitution of complete flow-field V = V0+eVp into Navier-Stokes equations

and linearization in e gives an eigenvalue problem for

- iwL2 o Vp = Lt o Vp (2.3)

where L1 and L2 are linear operators including derivatives with respect to y.

Discret[zation of (3.3) in y yields the eigenvalue problem for matrix

(A-iwE)F =0 A = D-IA (2.4)

Here vector F includes discrete representation of disturbances and matrixes

A and D corresponds to operators L1 and L2.
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2.1.2. Numerical me/hod

In all workswherestability of periodicflows is studiedthe matrixesA and D
weredeterminedandeigenvalueproblem(3.4) is solved.Herewe'll introduceall
alternativeapproachto stability of complexgeometryflowswhich is basedon
algorithmfor Navier-Stokesequationssolution. This approachmakesuspossible
to studythe stability of anyperiodicflowusinga codefor DNSof periodicflows.
In all of thesecodes the flow field is presented in form of two-dimensional Fourier

series in (x, z) plane. If we fix a part of harmonics representing basic flow, then

remaining harmonics will describe the evolution of disturbances. If the amplitude

of disturbances is small enough, it's evolution is described by linearized (near the

basic flow) Navier-Stokes equations. These equations may be written in form

similar to (3.:3)

0L V'?T( o%) = o
where L1 and L2 are the same as in (3.3). All codes for DNS solve the discrete

version of these equations of form

o G
Ot = AG

Here A is the same matrix as in (3.4) and G contains discrete representa-

tion of disturbances. If the finite-difference scheme used in DNS code is kllow,,

the matrix A may be easily related with matrix of transition B. The former

matrix describes the evolution of disturbances over one time step r and relates

disturbances at time t, G k and at time t + r, G as

G = BG k

Transition matrix may be directly computed using DNS code. For Crank-

Nicholson scheme used in our code, matrix B is related with A as

It is easy to prove that matrixes A and B have the same eigenvectors, a._d

eigenvalues of B, #j are related with eigenvalues of A, Aj as

I + _A:

So eigenvalues wj of stability problem may be obtained from #j as

2i 1 - #j

caj = . r l + #j

The form of disturbances corresponding to coj is deterlnined by eigenvector of

B associated with #).

The method described here was tested by means of computation of Blasius

flow stability and the secondary instability of finite-amplitude TS wave. The

results were in excellent agreement with those of traditional methods.
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2.1.3. Results

Stability of Blasiusboundarylayer with R = u_5"/v = 1000 distorted by har-

monic velocity modulation or by localized flow inhomogeneity were studied. The
first flow is a model of periodic streaky structure observed under enhanced outer

flow turbulence level, the second one is a model of the single streak or distortion

produced by wake studied in section 2. In both flows inhomogeneity velocity

vector Vi had only streamwise component ui of form

ui =af(y)g(z)

where a is an amplitude, functions f(y) and g(z) defines vertical and spanwise
distribution of flow inhomogeneity. Vertical distribution for both flows was

exp(-_) - exp(-_)

f(Y) = muax [exp(-_)- exp(-_)] (2.5)

with parameters A = 1.2 and y = 1.4 chosen for coincidence with profile ot

low-frequency pulsations measured in boundary layer subjected to fi'ee-stream

turbnlence [9]. This profile is plotted by solid line in Figure 22 a together with

profile of velocity pulsations from [9] shown by points. For the harnaonic inho-

mogeneity spanwise distribution was

= cos

whereas for localized inhomogeneity it was represented as

[ N ]g(z)- 1-q l_t_(l+q)_-._q,_cosn/3z q< 1 (2.6)
2

rt= l

The last function with q = 0.63 shown in Figure 22 b has a narrow maximum

within z = 0 and vanishes over the remanding part of period.

Due to basic flow symmetry, the disturbances may be symmetric or antisym-

metric, i.e. the sl;reamwise velocity of disturbances may be even or odd func-

tion of z. As was mentioned above, the disturbances of both these types may

have fundamental or subharmonic period. So, there exist four types of unstabl(,

modes. Figure 23 shows the spanwise distribution of streamwise velocity Re(u)

and amplitudes of pulsations lul for all these modes computed for harnmnicallv

modulated flow with a = -0.3, o_ = 0.25, /3 = 0.6. Symmetric and antisymmet-

tic fundamental modes are shown in Figure 23 a and b, whereas Figure 23 c and

d shows symmetric and antisymmetric subharmonic disturbances. For symmetric

modes lu[ is largest at the minimums of basic flow velocity ui, whereas maximal

pulsations of antisymmetric modes coincides with maxima of gradients ]OuJOz 1.

The phase velocity of symmetric modes coincides with TS wave velocity, but
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antisymmetricdisturbancespropagatefasterwith c = l_e(_)/a = 0.6. Further

computations reveals that the subharmonic mode is the most unstable one among

the antisymmetric disturbances and the fundamental mode is the most anaplified

symmetric disturbance. So, only subharmonic antisymmetric and fundamental

symmetric modes will be considered later. For brevity, these modes will be named

as antisymmetric and symmetric ones.

Growth rates 0 = Ira(w) of symmetric and antisymmetric modes as func-

tions of anaplitude a and spanwise wavenumber/3 are shown in Figures 24 and

25 respectively. These results were computed tor o_ = 0.25 amplitude depen-

dance of 0 corresponds to /3 = 0.6, and 0(/3) corresponds to a, = 0.3. Growl.l_

rates of all modes increase with amplitude growth. For small amplitudes of flow

inhomogeneity the symmetric modes are the most unstable, whereas antisymmet-

ric disturbances becomes the most amplified for large amplitudes a >__0.3. The

/3- dependences of growth rates are different for symmetric and antisymmetric

modes. Growth rates of symmetric modes are maximal for/3 = 0 and gradually

decrease with growth of/3. Amplification rates of antisymmetric disturbances

initially increases with/3 growth, then reaches maximum at/3 = 0.6 and falls oil.

This result contradicts with conclusion of [10] about growth rate of these modes

proportionality to ]Oui/Oz].

Figure 26 shows the growth rates of symmetric and antisymmetric modes as

functions of reduced fi'equency F = 106w/R computed in flo/v with a = -0.3 and

/3 = 0.6. Both symmetric and antisymmetric disturbances amplify much rapidly

then TS waves. The growth rates of these two types of modes are comparable,

with symmetric modes are the most unstable at large frequency, whereaz the anti-

symmetric modes are the most amplified low-frequency disturbances. Instability

occurs in wide frequency range 20 _< F < 220 with maximal growth rate achieves

at F = 150. Disturbances in the same frequency range amplified in the boundary

layer flow with embedded streamwise vortices in experiment [10].

Stability localized inhomogeneity flow (3.6) with positive and negative ampli-
tudes a = 3-0.3 was studied in order to reveal the influence of width of inllomo-

geneity region on flow stability. For this purpose the stability of flow (3.6) with

q = 0.63 and various /3 with respect to symmetric modes was computed. The

results shown in Figure 27 demonstrates that the flow with high-speed streak

has almost the same stability characteristics as homogeneous Blasius flow. In

flow with low-speed streak the growth rates of disturbances remains the same

as in Blasius flow if/3 >_ 0.2. The instability in this flow becomes remarkable

only if-,3 _< 0.2, with growth rate of disturbances increases with /3 diminishing.

It means that single thin streak does not destabilize flow in spite of inflexible

velocity profile within it. The remarkable instability in this streak occurs only

if it's width exceeds a threshold value L* _ 7¢5". This fact explains the abscm'c

of transition in boundary layer distorted by wake studied in section 2. Really,

in all flow configurations tested, the width of distorted part of boundary layer

did not exceeds the threshold value predicted by theory. It's interesting to note
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that the harmonicmodulationof smallspanwiseperiod Tz _< L* (/3 _> 1) leads

to remarkable instability (see Figure 25). So, the periodically placed streaks are

more dangerous that equal sole streak.

2.2. Receptivity of swept wing boundary layer to small outer flow in-

homogeneity

In this section the response of boundary layer on the swept wing to tile sinusoidal

variations of outer flow velocity in spanwise direction is studied theoretically.

Similar to straight wing, the flow inhomogeneity should amplify" in boundary

layer via Goldstein's vortex stretching mechanism. The resulting disturbances in

boundary layer will be quite simiiar to steady cross-flow instability vortices, so

these vortices should be generated. This is an additional mechanism of steady,

outer flow disturbances growth in swept wing boundary layer. The simple analytic

theory describing amplification of outer flow inhomogeneitythrough the cross-flow
instability modes generation is developed here.

2.2.1. Problem formulation

Consider the viscous incompressible fluid flow over the infinite swept wing. Scheme

of flow configuration and coordinates systems used are shown in Figure 37. The

outer flow is assumed to be unidirectional and it's velocity varies slightly along

the span. Let's designate the chord of the wing as L, the mean value of outer

flow velocity as b_ and the angle between the flow direction and chord as ct (see

Figure 37). The radius of the wing leading edge nL is assumed to be small with

respect to chord, i.e. e; << 1. However, the wing thickness is not necessary small.

Further we suppose, that the Reynolds number R = U_L/v is large enough lot

viscous effects been negligeable outside thin boundary layer. To describe flow

the nondimensional variables are introduced using L and U_._ as reference length

and velocity. Two Cartesian coordinates systems shown in Figure 37 (x, y, z) and

(_, _l, z) will be used further. Origins and applicate axis z of both systems coin-

cide. Abscisa axis x of first system coincides with outer flow direction, whereas

abscisa axis of second one is directed along the chord of the wing. Components

of vectors in these systems will be designated by subscripts x,y,z and (,71, z

respectively.

Further we suppose that velocity vector V far upstream the leading cdgo

({ ---*oo) is presented in form

V = {V,:, Vv, V_} V,: ---+1 + eu_(y) I/_ = V_ --+ 0 _ ---+-e_ (2.7)

where e << 1 is small parameter and function u_(y) describes the velocity

variation along the span. At the surface of the wing z = z,({), the no-slip

boundary conditiofis should be established

V(_, _, z_(_)) = 0 (2.8)
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Boundaryconditions(3.1), (3.2) togetherwith Navier-Stokesequa.tionsd('-
scribingthe flow providescompleteproblemformulation. In contrast to workof
Goldsteinat al [4],only linearwith respectto e solution of this problem will be

sought here.

2.2.2. Solution for inviscid flow

As was mentioned above, the flow around the wing is inviscid outside the tlli,

boundary layer whose thickness is ,-_ R -1/2. The solution for inviscid flow is

sought in form

V = Uo + eu

where U0 is a potential basic flow around the wing corresponding to uniform

outer stream and eu is a disturbance, generated by outer flow inhomogeneity.

The disturbance is governed by linearized Eulier equations. The solution of this

equations obtained in [13] can be specialized to present case to give

u = u (I) + V_ (2.9)

(2.10)

(2.il)

(V_,n)l_=z,(c,) = 0

Here Y is an integral of equation for streamlines of basic flow

(2.12)

dx dy dz

Uo_ Uo_ Yoz

such, that Y + y as { + -oo, and A(x, y, z) is Laighill's [2] drift function

A(z, y, z) = z + _ Vo_(z',v '), 4_')) - i dx'

Integration here is performed along a streamline of basic flow passing through

point x, y, z. The difference of drift function between any two points on a stream-

line is equal to the time it takes a fluid particle to transverse the distance between

those points.

For subsequent consideration it is more convenient to use coordinates ((, 7/, :)

fitted to wing chord. In these coordinates the drift function takes form

A = 7?sin _ + A±(_, z)
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where

Lrce- g0e] (2.1a)

is the drift function corresponding to flow around straight wing with outer

flow velocity equals 1. To find integral Y, let's relate dy with d{ for displacement

along the streamline. Bearing in mind relationship

we find

U_ sin c,= <- <

[cos ]dy = cos adr 1 - sin ad{ = sin a [ _o¢- 1 d{

Integration of this along streamline provides the expression for Y

Y = lim y(_, r/(_), z({)) = 7/cos a - A±(_, z) sin ca (2.l,l)

Substitution of this into (3.4) and (3.5) gives the expression for U (I) a.ud

equation for9 in coordinates (_, 77,z)

u_ I) = u_(Y) sin a U(,I) = u_(Y)V.A, cosc_ (2.15)

02W
q- V_c2= -u_(Y) _721/_l_cosct 'u_ [1 (_7.1./__1_)2]sil]aCOSCt (2.16)

Or/2

where u_I)= I._¢f"(I)'_"(l)]'Jand V± = {_, _} are projections of u (I' and three-

dimensional operator V onto (4, 7/) plane.

Further we introduce the ortohonal coordinate system (.s,q) associated will1

streamlines of potential flow around the wing

¢ dO fo _ dt9 '

where

g __

Uo. 0_ 0_ u0_ 0_ 0_
-- W -- -- --

cos a O_ Oz cos a Oz O(

and _ = 0 at the wing surface and ¢5 = 0 in the stagnation point. For

Jacobian I = ][O(s, r])/0((, 7)11- 1, the expression (3.9),equation for _ (:3.10) and

operator V j_ remain unchanged upon the coordinates transformation. Ilowever,

boundary conditions at the surface (3.6) become more simple

_(_, O) =0 ('_'.17)
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Solutionfor potential _ will besoughtin form

, , f=_o +_5 _ =cot± u_o(Y)dY

Substitution of this into (3.10), (3.11) gives the following problem for _5

02_+ v1_= (1 -cot 2_) _:(Y)sin _ cos_
072

oGrs O_ (2.18)_-_ , ,=0

Our task is the finding the solution at the wing surface. To do this let's find

the asymptotic behavior of A± as n + 0. At first the expression for A± in

coordinates (q_, tg) should be found. For this purpose we relate d'-I_ and d{ lot

displacement along the streamline as

U 2 + W 2
O0 O_2dz = Ud_ + Wdz - d_

de = -g-(d_+ Oz U

substitution of this into (3.7) gives

- 77[1 ]A±((I), _) = _5 + A0(q2) _ U2 + W2 1 d(I)

where

- ]A0(q)= oo U2 + W2 1 dO

as shown in [4], Ao(qJ) becomes singular near the wall as

A0(q) -'_ -r In • + A00(qJ) k_ + 0

where r is radius of leading edge and A0o(q) remains bounded as qJ + 0. So,
the drift function within the wall behaves as

A± ---, --In n + A0(s) n ---, 0
a

where

q_=O a

Here Uo(s) is velocity at the wall, a is constant depending from the shape of

the profile of wing. From this result and (3.8) it follows that

Y _ qcosa + _-lnnsina- Ao(s)sina n ---_O (2.19)
a

With this asymptotic of Y in hand one can easily show that solution of (3.12)

within the wall appears in form

_ n2F(s, r1, Y) n _ 0
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whereF remains bounded when n -+ 0. So, V15 vanishes as 7__ 0, and the

solution for velocity of disturbance near the wall in accordance with (3.3), (3.9),

(3.12) becomes

u, ,-- uoo(Y) cos c_+ _ --,0

0:' __1 uoo(y) as 7z _ oo
u, ,v uoo(Y) sin a+ _ _ sina

Un --* O

Finally, we have following expressions for components of complete velocity
vector V near the wall

Vs ---*Uo(s) cosa; V_ + sina + euo°(Y)- ; V,, _ 0 as n _ 0 (2.20)
sin o_

2.2.3. The boundary layer solution

Near the wall the boundary layer of thickness ,-_ R -1/2 should be introduced to

fit no-slip boundary conditions. In this layer we shall use the rescaled normal Io

wall coordinate Z = nv/-R and notations u,v,w for velocity components along

._,77 and n axis. Due to problem linearity, the boundary layer solution will b(_

sought in form

_, = _0(_, z) + _(_,,/, z)

v = _0(_, z) + (_(_, _, z)
1

: _o(_, z) + _(_,_, z)

p = po(_, z) + _(_, _, z)

where basic flow u0, Vo, w0 and po correspond to boundary layer in the homo-

geneous stream and u, v, w, p describe perturbations of velocity and pressure

introduced by outer flow inhomogeneity. Basic flow is described by conventional

Prandtl equations with boundary conditions

.o(_,o) = _o(_,0) = wo(_,o) = 0; .o(_) = Uo(._)cos_ ,,o(oo) = _n,_

Disturbances obey the linearized Navier-Stokes equations with boundary con-

ditions following from (3.13), (3.14)

u, v, w(s, 71,0) = 0

_(s, 71,z) _ 0;

b(s,,l,z) .-e ,i--l-guoo(r/cos a + (_ lnZ- A0(s)- _lnR)sin a)

as Z ---_ o_
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For the sakeof simplicity,the sinusoidalflow inhomogeneityof l'orm

will be considered further. The period of inhomogeneity is assumed to be of

the same order as the spanwise period of cross-flow instability vortices, so /3 is
assumed to be of order of 1.

To meet the boundary conditions (3.15), (3.16) the solution for disturbances

of velocity and pressure will be sought in form

_5
= (s, Z)e i4-_(x¢*)+0'7) (2.2.2)

where X(s) = --_(Ao(s)+ _lnR)sina, /3 = /3cosa. From (3.15), (3.16)it

follows that amplitudes u, v, w should satisfy the boundary conditions

1 eiU In Z Z ----+ oo

a(_,o) = _(_,o) = _(_,o) = _(_,_) = o _(_'_) + sin_
(2.23)

where # = _v'_ sin a.
a

The distmbances (3.17) are the products of amplitudes u, v, w, p, which vary

relatively slowly with s to fast oscillating exponent. When they are substituted

into linearized Navier-$tokes equations the terms of order of R, v/R and 1 appear.

If the terms of order of 1 were neglected and pressure is eliminated from equations,

then the following equations for amplitudes of velocity are obtained

L(_)o& + 5(M(_)o_ + N(_)o + K(_)ofi) = 0; ,5 = R -_/_ (2.24)

Here

i-_ + iZ_ + Os
=0

( O2 ) ('-O2u° ,,_O_vo_L(_) = (iauo + i_vo) . OZ 2 72 - _za--f_ + zp-_-_7 )

(0 _ ) 0_0N(a) =_o 0-2_ _ - -- + 2i_ (i_0 + iZ_0) (9..25)OZ _

and 5= = .°.z_, .),2 = K2 +/32. Expressions for operators M(_), K(_) describing

the effect, of flow nonparallelity will not be used further, hence they are" omitted
hel'e.
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Solutionof (3.19)with boundaryconditions(3.18)will besoughta.sa sum

{0}
_r _0

where augend fits the boundary conditions (3.15) and addend satisfy tile ]lo-
mogeneous boundary conditions

_o(_, 0) = _o(_, 0) = _o(_, 0) = ao(_, _) = _o(_, oo) = 0 (2.27)

One of possible forms of augend in (3.21) is

H(Z)eiUin z _ _ i13 fooz " z'- sina sina H(Z')e '"h" dZ'

where H(Z) is an arbitrary function filling the following requirements

14(Z) _1, Z --, _; H(Z)lZ" _ co,_t Z _ O

This choice permits us to satisfy continuity equation for 3,., _,. and ensures

that @_, w,, w_, w_ and ^tvw, are finite as Z --* 0.

Substitution of (3.21) into (3.20) gives the following problem for _o, _o, £v

0'_0
L(_)Ot_o+(5(M(_)O_o+N(_)o--_-s +K(_)OGo ) =-L(_)o_r-(SM(_)o.&. (2.28)

To solve it, let's suppose that _ is close to eigenvalue of Orr-Sommerl'eld

equation ao, corresponding to steady cross-flow instability mode. Physically, it

means that the direction of cross-flow instability vortex is close to the stream-

line of undisturbed flow at the outer edge of boundary la.yer. Introducing small

para.meter 0 we write

= a0 + A(s) ~ 1

In this case the Orr-Sommerfeld operator L(_) may be presented in form

0L

L(_) = L(ao)+0_-a(ao ) • A(s)

and (3.23) becomes

[L(ao) + 0A _L(ao) + 5M(%)] OtSo + 6N(a0)o-_ + 6K(%)Ogo + O(06) + 0(02) =

-L(_)o_ - (SM(_)o_>,.
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If weassumethat 0 >> 5 the solution of this equation may be sought ill the
frame of multi-scale method as

0_o = A(X)_(s,Z) + w,(s,Z) X = _s A = _ << I (2.2.9)

where _(s, Z) is an eigenfunction of Orr-Sommerfeld equation corresponding

to eigenvalue ao. Substituting this into (3.22) and retaining only O(0) terms we
obtain

L(c_0)OWl = -L(ao)o_; - AA (ao) o ¢ - _-_-N(ao) o

This equation for wl has solution only if right part of it is orthogonal to eigen-

function q5+ of adjoint to L(a0) operator. Theorthogonality condition provides

tile following equation for amplitude A(X)

dA

dX iA(AX). A = P(AX)

w here

P(XX) =
(1)+, N(a0) o ¢_)

and (q2, 9} = f_ OJ_dZ is a definition of scalar product.

It may be easily shown, that general solution of this equation is

A = ae i°(x) + i P + O(A); --dO = A(AX) (2.:/0)dX

where a is constant depending fl'om initial condition. To tbrmulate this con-

dition, let's suppose that near the leading edge the difference _7- a'o becomes

finite, so IA(s)l becomes .-. 1/0 when s becomes small. Here scaling (3.24) be-

comes unsuitable and Wo "_ 1 or A -._ 0 should be written instead of it. So, if we

want to match the solution (3.25) with solution near the leading edge we must
to write

A.._O(O),._a+iP.O(O)

From here we have an estimate a --_ O(0), so first term in (3.25) may be

neglected and finite expression for amplitude becomes

- .p

A=i--
A

So, the expression t'or t_ in ordinary boundary layer variables Is

_=i f (_) ¢(s,Z)+O(a-ao)
O_ -- Ol 0
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This expressionis valid for R-a/2 << 1_-ao[ << 1. if [_-c_o] b(,con,cs
_,,R -_/2 the effect of flow nonparallelism should be taken into account.

Results obtained reveals that boundary response on outer flow inhomogeneity

is inversely proportional to difference _ - a0. To estimate this difference we

shall use the generalized Faulkner-Scan (F-S) self-similar flow as a simple model

of boundary layer flow at real swept wing. This flow corresponds to outer flow

velocity distribution

Uo = s m cos a V0 = sin a

and is defined as

tt 0 _ ,_q f coso_
Vo = G' sina _5= \m + 1/ /_-1/2 g

where functions F and G are solutions of boundary value problem for ordinary

differential equations

2rn ( ) a'" _.F"+FF"+-_7 1-F '2 =0 +FG' 0

F(O)= F'(O)=O F'(oo)= 1 C(O)-=G'(O)=O G'(oo) = 1

Of course, real flow over the wing should be approximated by F-S Flow with

exponent m varying with s. Immediately at the nose the flow near stagm_tio,_

point with m = 1 occurs, than flow acceleration becomes weaker and m gradually

diminishes to zero. After the point of minimum static pressure, the flow begins

to retard and m becomes negative. So, to estimate the difference _ - c_u over

all wing surface, it should be computed for F-S flow with various m. Results of

such computations made for R = 1000, a = 7r/4, s = 1 and several values of

J = 0.2, 0.4 , 0.6 are presented in Figure 38. The real part of difference _ - o0

and it's absolute value as funetions of m are plotted by solid and dashed lines

in this Figure. For all values of spanwise wavenumber. Rc(_ - a0) is positive for

positive m and negative if ra is negal;ive. As rn tends to zero Re(_ - a0) goes to

zero. Due to imaginary part of a0 being small ,-, l0 -3 and Zi' real, the

absolute value of _- ao is predominantly defined by it's real part. So, I_ - ct0t

becomes small enough as rn tends to zero. Unfortunately, cross-flow instability

modes do not exist for rn = 0, so the value of _ - ao is not defined in this point

and minimum of I_ - a0l could not be found at all. However, for smallest values

of m = :1:0.001, where computations were performed the absolute values [_: - c_ol
were about 2 . 10 -3, so the boundary layer distortion may be about 500 times

g_eater then oncoming flow inhomogeneity.

In real flow over the wing, the boundary layer velocity profiles with m _ 0

correspond to flow around pressure minimum. So, the maximal boundary layer

distortion should occur near the minimum of static pressure distribution over

wing profile. However, this conclusion is quite preliminary due to crudeness of

F-S flow model. More realistic prediction of boundary layer distortion may be

reached by' means of solution of (:3.23) in the boundary layer over real wing using
PSE-method.
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3. Conclusions

1. Large volume of averaged (steady) and pulsational flow characteristics of

boundary layer/free stream inhomogeneity interaction have been measured wit.l_

plates of different nose shapes and for different free stream inhomogeneities. Flow

inhomogeneities were created by the wakes behind one or several wires stretched

normal to leading edge.

2. It was found, in a qualitative agreement with Goldstein's theory [,1,6], that

the deformation of normal to the plate vorticity by the flow around the leading

edge may" be the cause of streamwise vortices (streaks) formation observed in the

presence of free-stream turbulence.

3. The vortex stretching in course of this deformation leads to significant

amplification of disturbances in boundary layer.

4. Three different regimes of single wire wake/boundary layer iuteraclioll

were discovered: linear, symmetric nonlinear and antisymmetric nonlinear ones.

The regimes are distinguished by different character of downstream amplification

of disturbances and different spanwise disturbances distribution. The antisym-

metric regime is the most unexpected as antisymmetric spanwise distribution of

disturbances in boundary layer takes place for symmetric upstream boundary
conditions.

5. The increase of wake velocity deficit and decrease of wake widtl, lead

to transformation of distortion fi'om linear to symmetric nonlinear and then to

antisymmetric nonlinear regime. The criterion for transition to antisymmetic

regime was introduced.

6. Distortion of velocity profile in the boundary layer for nonlinear regimes

have maximum close to leading edge. This maximum may be the cause of early

(bypass) laminar-turbulent transition. If not, the distortion then decreases down-

stream due to viscous dissipation and becomes smaller then gradually increasing

distortion for linear regime.

7. The vortex lines stretching and hence disturbance amplification increase

with increase of plate nose radius.

8 Interaction of several wakes generated by a set of wires intensify the pro-

cesses caused by single wake.

9. The wake/boundary layer interaction properties investigated here simu-

late/reflect boundary layer processes caused by low frequency vorticity of fiee-
stream turbulence.

10..The results obtained permit to suppose that the shape of leading edge

should have noticeable influence on laminar-turbulent transition caused by outer

flow turbulence/inhomogeneities. Transition Reynolds number tot blunt nose

body may be few times smaller than those observed in well-known experiments

[9-11] performed with sharp leading edge plates. This difference caused not so

much by different pressure distribution but by different stretching of vortex lines

by flow around leading edge.

28



11. Thestability of steadyspanwise-modulatedflowwasstudiedtheoretically.
This flow is a modelof streaksfound in experimentsof I(endall et al [9-11]
at high free-streamturbulencelevel. It wasshown,that one isolatedst.real<is
morestablethen periodicallyplacedstreaksof the sameshape. Tile isolated
streakdoesnot destabilizeflow at all if it is narrowerthen thresholdvatueof
,v 7<5". Experiment described in Part I shows that laminar-turbulent transition

in periodically modulated boundary layer distorted by the wake from a set of

wires really occurred earlier then in a boundary layer distorted by single wire
wake.

12. The response of boundary layer on the swept wing to the sinusoidal

variations of outer flow velocity in spanwise direction was studied theoretically.

In addition to Goldstein's vortex line stretching mechanism, the amplificatio_ of

outer flow inhomogeneity in boundary layer through the cross-flow instability mode

generation was found. This phenomenon may lead to extremely high receptivity

of swept wing boundary layer to outer flow vorticity.

13. Understanding of streaks formation and their structure opens the hope

of control the laminar-turbulent transition caused by outer flow vortical distur-

bances.
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Table
| i

oumbcr oum- Bum

o[ her bet U d L u0 b Rd R _. regime K K 0 x*
conligu of of [mini {ram] [nun] (see*) {mnq

ration, plate wires

1 1 1 17 0.09 40 0.056 0.46 106 1.17- |0 _ a.s. 0.15 3.9.10 --

2 1 1 17 0.09 250 0.032 0.88 106 1.17.10 G S 0.045 1.17, I0 --

3 I 1 17 0.09 720 0.020 1.66 106 1.17,106 I 0.015 3.9.10 "tl --

4 2 1 17 0.09 40 0.055 0.46 106 i.17.105 a.s 0.30 5.6.10 .3 --

I
5 2 1 17 0.09 150 0.039 0.73 106 !.17,10 c tr 0.133 2.5.10 "_ --

6 2 1 17 0.09 250 0.032 0.88 106 1.17.106 s. 0.09 1.7-1() "3 --

7 2 1 17 0.09 500 0.023 1.27 106 1.17.10 ¢ 1 0.046 8.5-10 _ --

8 2 1 17 0.09 725 0.020 1.66 106 1.17.10 ¢ I 0.030 5.6.10 "_t --

9 3 I 17 0.09 40 0.055 0.46 106 1.1%106 a.s. 0.64 8.1, I0 "_ --

10 3 1 17 0.09 250 0.032 0.88 io6 1.17-1o _ tr 0.191 2.4-10 $ --

11 3 1 17 0.09 725 0.020 1.66 106 1.17.106 1 0.064 8.13,10- '4 400

12 4 1 17 0.09 40 0.055 0.46 106 1.17-106 a.s. 1.20 1.1.10 "2 75

13 4 I 17 0.09 150 0.039 0.73 106 1.17-10 _ s 0.538 5.0,10 "3 75

14 4 1 17 0.09 250 0.032 0.88 106 1.17o 106 s 0.360 3.4.10 "3 250

15 2 1 5 0.3 40 0.109 1.07 104 3.45,10 _ a.s 0.255 6.7.10 "_'

16 2 1 5 0.3 100 0.073 1.33 104 3.45.105. s 0.137 3.6,10 "J --

17 2 I 5 0.3 200 0.040 1.87 104 3.45,10 $ 0.053 i.4,1 (_ 3

18 2 1 5 0.09 I0 0.13 0.284 31 3.45-10 b" s i.13 2.9-1(_ z --

19 2 1 5 0.09 40 0.064 0.567 31 3.45,10 y s 0.282 7.36.10 -3 --

20 1 . - 5 17 0.09 40 0.055 - 106 1.17.10 _ ........

6
21 1 5 17 0.09 725 0.02 -- 106 1,17,'10 ........

22 2 5 17 0.09 725 0.02 - 106 1.17-I0c .... 400

23 3 5 17 0.09 40 0.055 - 106 1.17-10 ¢ ...... 100

* regimes of interaction'o 1 - linear, s - symmetric nonlinear, a.s - antisymmetric nonlinear
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Figure 1. (a) - experimental setup: 1 - plate, 2 - wire(s), 3 - wire holder,

4 - probe, 5 - wire holder movement, 6,7 - probe movement,

8,9 - flaps.
(b) - coordinate system and general designations.
(c) - parameters of single wire wake: uo - velocity deficit,

b - half- width.
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